skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, Yunha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> We introduce a model of dark matter (DM) where the DM is a composite of a spontaneously broken conformal field theory. The DM is a thermal relic with its abundance determined by the freeze-out of annihilations to dilatons, the Goldstone boson of broken conformal symmetry. If the dilaton is heavier than the DM this is an example of forbidden DM. We explore the phenomenology of this model in its 5D dual description, corresponding to a warped extra dimension with the Standard Model on the ultraviolet brane and the DM on the infrared brane. We find the model is compatible with theoretical and experimental constraints for DM masses in the 0.1–10 GeV range. The conformal phase transition is supercooled and strongly first-order. It can source large stochastic gravitational wave signals consistent with those recently observed at pulsar timing arrays like NANOGrav. The majority of the viable parameter space will be probed by future detectors designed to search for long-lived particles, including most of the region favored by the NANOGrav signal. The rest of the parameter space can be probed at future direct detection experiments. 
    more » « less